
JOURNAL OF COMPUTATIONAL PHYSICS 30, 145-148 (1979)

Note

A Fast Poisson-Solver for Large Grids

One of the simplest fast direct methods for solving the discrete Poisson equation is
adapted for use in very large problems where the right-hand side and solution fields must
be stored on disc. The performance of the algorithm described here is compared with that
of a technique due to Schumann for a three-dimensional Poisson problem on a (128)” grid.

1. Introduction

Fast direct methods (“Poisson-solvers”) [2, 3, 4, 51 are well-established for the
solution of the discrete Poisson (or simple Helmholtz) equation in the case of moderate-
sized problems which can easily be accommodated within the fast random-access
memory of a computer. The purpose of this note is to demonstrate that one of the
simplest such algorithms can easily be extended to very large problems for which only
a small proportion of the gridpoint values can be held in memory at any one time.

The scheme described here was developed for use in a large numerical weather
prediction model. Implementation of a semi-implicit time integration algorithm [l]
requires the solution at each timestep of a three-dimensional discrete elliptic equation
in spherical coordinates, with grid dimensions up to 360 x 180 in the horizontal, and
I5 vertical levels. Diagonalization of the vertical part of the finite-difference operator
reduces the problem to a set of Helmholtz equations, each of which must be solved
over a horizontal grid covering the surface of the sphere.

To simplify the discussion, we present the scheme here in the context of a two-
dimensional Poisson problem in Cartesian geometry. The extension to three dimen-
sions is immediate, and results are included of an experiment to test the scheme on the
solution of a discrete three-dimensionalPoisson equation over a 128 x 128 x 128 grid.

2. Algorithm

Suppose that we wish to solve the discrete Poisson equation (using centered second-
order differences) over the grid (i, j: 0 ,< i < N, 0 6 j < M) with homogeneous
Dirichlet boundary conditions and unit gridlength. Let

OO21-9991/79/010145-04$02.00/0
Copyright 0 1979 by Academic Press, Inc.

All rights of reproduction in any form reserved.

146 BURRIDGE AND TEMPERTON

Then the discrete Poisson equation can be written as a block-tridiagonal system:

xj-1 + Axj + xj+l = bj , 1 <jdM-1, (1)

with x,, = X~ = 0, where A is the tridiagonal matrix of order (N - 1) with constant
diagonal term -4, and l’s on the sub- and superdiagonals.

Let S be the matrix representation of a Fourier sine transform; thus S is a square
matrix of order (N - 1) with elements given by S = (Q), where sij = (2/N) sin@/N).
With this scaling, S-l = (N/2)S. Denote the components of the vectors $ = Sxj
and bi = Sbi by 9,,j and !& (1 < k < N - 1), respectively.

Then the basic FFT method for solving the system (1) proceeds as follows:

(1) For each line j, 1 < j < M - 1, calculate bi = Sbj , using Fast Fourier
Transform (FFT) techniques;

(2) For each wave number k, 1 < k < N - 1, solve the tridiagonal system

$k,j-l + XkRk,j + ik.j+l = &k,j 9 l<j<M-1

with &O = kk,M = 0, where A, = 2 cos(kn-/N) - 4;

(3) For each line j, 1 < j < M - 1, calculate xj = S-lfj .

Suppose now that the right-hand side is stored on disc, with the data partitioned
into (M - 1) records each corresponding to a vector bj , and that the solution is to be
written to disc in the same format. Steps (1) and (3) of the algorithm outlined above
can easily be implemented, since we can read in one record at a time, multiply the
vector by S or S-l, and write out the resulting record. However, step (2) appears to be
more difficult, since for each tridiagonal system we require one element from each
record j, 1 < j G M - 1. In effect we need to reorder the data by columns rather
than rows for step (2), and then to reverse the reordering ready for step (3). Schumann
[6] has devised a “fast matrix transpose” algorithm for externally stored data, which
can be used for this purpose [7].

There is, however, a much simpler solution. We solve each tridiagonal system (2)
by means of the following algorithm, based on Gaussian elimination:

wk.O - - 0; 0k.j = (h, - w&1)-l, 1 <jjM-1; (3)

g k.0 = 0; gk,i = wk.j(6k.j - gk,j-11, 1 <j<M--1;
II

Xk.M - > - 0. 2k.j = gk,j - wk,jgk,j+l 3 M-l >j>l.

In the following algorithm description, it is helpful to define

FAST POISSON-SOLVER FOR LARGE GRIDS 147

where the first subscript of the vector components corresponds to the wave number
index k. The coefficients ale,? can be precomputed and stored on disc in the same
format as the other fields, so that each record contains a vector wj . Also, we use the
notation ab to denote componentwise multiplication of two vectors.

For a problem in memory, it is natural to solve one tridiagonal system at a time;
however, as they are independent they may be solved in parallel. This feature is
useful for implementation on parallel computers [3] or vector machines.

Moreover, by solving them in parallel the sine transforms and the solutions of
tridiagonal systems can be interleaved in the following manner:

(a) Forward sweep: initialize by setting g, = 0. Then for each line j, 1 < j d
M- 1:

(1) Read in the vector bj , and multiply by S to formb, .
(2) Calculatef$ - gjpl .
(3) Read in the coefficient vector wj and calculate gj = wj(bj - g,-J.
(4) Write gj to disc and proceed to line (j + 1).

(b) Backward sweep: initialize by setting iiM = 0. Then for each linej, M - 1 3
j> 1:

(1) Read in the coefficient vector wj and calculate w&+~ .
(2) Read in gj and calculate %j = gj - w~$+~ .
(3) Multiply jzj by S-l to form x, .
(4) Write x5 to disc and proceed to line (j - 1).

At the end of the backward sweep, the complete solution has been written to disc, the
whole process requiring 6 (M - 1) input/output (I/O) operations, where an operation
consists of reading or writing one record. This compares with (6M + 5n/i log,M) I/O
operations (for M = N) in the algorithm suggested by Schumann [7], and for a
128 x 128 problem represents an 85 % reduction in I/O requirements.

The coefficient vectors wj may be generated and written to disc during the forward
sweep, without altering the number of I/O operations. Unfortunately it is not possible
to economize on I/O by generating them again during the backward sweep, since the
backward recursion corresponding to Eq. (3) is numerically ill-conditioned.

The minimum number of memory locations required for data is 2(N - l), excluding
memory for the I/O routines. In order to achieve a reasonable degree of parallelism
between computation and Z/O operations, it is necessary to allow a further 2(N - 1)
memory locations for buffering.

The reverse reading of the records from disc storage is most easily accomplished
by random or direct access input routines, but can be performed with sequential
I/O routines using the equivalent of the Fortran BACKSPACE feature.

For computer systems with virtual storage or a paging mechanism, the I/O opera-
tions could be performed by the operating system automatically, and indeed efficiently,
provided that the vectors xj , etc., have been carefully ordered.

148 BURRIDGE AND TEMPERTON

By allowing a small number of extra lines in memory at a time, Hackney’s FACR (1)
algorithm [4, 51 can also be implemented in this way, provided that the tridiagonal
systems are again solved by Gaussian elimination. The method also extends imme-
diately to the three-dimensional discrete Poisson equation, which can be solved by
performing a two-dimensional FFT on each plane, solving tridiagonal systems in the
third direction, and then performing a two-dimensional inverse FFT on each plane;
it is simply necessary to replace lines by planes in the algorithm described above.

3. Implementation

To demonstrate the effectiveness of the algorithm, two Fortran programs were
written to solve the three-dimensional Poisson equation over a 128 x 128 x 128 grid.
One implemented the scheme presented here, while the other used a generalization
of Schumann’s transpose algorithm in which the fields were treated as N x N matrices
with vectors of length N as matrix elements. In both cases the right-hand side and
solution fields were stored on disc as 128 records each of dimension 128 x 128, and
space was allowed for four such records to be held in memory simultaneously. Full
use was made of I/O routines permitting data transfer and computation to proceed in
parallel. Both programs were run on a CDC 6600.

The algorithm described here required 340 set of CPU time, and 195 set of I/O
time; almost complete overlapping was achieved, so that the optimum elapsed time
was also about 340 sec.

Schumann’s algorithm required 380 set of CPU time, the increase being mainly
due to the data transfers within memory required during the transpose phases. The
I/O time was 1,350 set, with an optimum elapsed time in the region of 1,500 sec.

The right-hand side was derived from a prescribed solution field consisting of
random numbers in the interval [-1, fl], against which the computed solutions
were checked. The maximum error was 1.14 x lo-l2 (in both cases, as the programs
were identical in terms of floating-point computation).

REFERENCES

1. D. M. BURRIDGE AND J. HASELER, to appear.
2. B. L. BUZBEE, G. H. GOLUB, AND C. W. NIELSON, SIAM .I. Numer. Anal. 7 (1970), 621-656.
3. B. L. BUZBEE, IEEE Trans. Comput. C-22 (1973), 793-796.
4. R. W. HOCKNEY, J. Assoc. Comput. Mach. 12 (1965), 95-113.
5. R. W. HOCKNEY, The potential calculation and some applications, in “Methods in Computational

Physics,” Vol. 9, 135-211, Academic Press, New York, 1970.
6. U. SCHUMANN, Angew. Inform. 5 (1972), 213-216.
7. U. SCHUMANN, IEEE Trans. Comput. C-22 (1973), 542-544.

RECEIVED: June 23, 1977; REVISED: November 22, 1977

DAVID M. BURRIDGE AND CLIVE TEMPERTON

European Centre for Medium Range Weather Forecasts
Bracknell, Berkshire, United Kingdom

